
Mathematical computations with GPUs

GPU architecture

Alexey A. Romanenko

arom@ccfit.nsu.ru
Novosibirsk State University

Master Educational Program
“Information technology in applications”

GPU — Graphical Processing Unit

 GPU is a CPU on video-card. GPU has its own parallel
architecture (SIMD)

 Program on GPU can’t communicate with the host

 Program on GPU can’t update host memory

 Uploading/downloading data to/from GPU is
performed via PCI Express. Host initiate data exchange
process.

 GPU is a co-processor for CPU

CPU vs. GPU

Control

ALU

ALU ALU

ALU

Cache

DRAM DRAM

CPU GPU

 Less die space for control and cache

 More die space for ALU

CPU vs. GPU

Fermi processor die

Memory access

Architecture of GPU (GT200)

 TPC - Texture Processor Cluster

 SM — Streaming
Multiprocessor

 Multi-threaded processor core

 Fundamental processing unit
for CUDA thread block

 SP — Streaming Processor

 Scalar ALU for a single CUDA
thread

Number of SM

GeForce 8800 GTX 16

GeForce 8800 GTS 12

Tesla D870 2x16

Tesla S870 4x16

Tesla C1060, GT200, Tesla T10 30

Tesla S1070 4x30

 Compute Capability 1.0+
 Asynchronous kernel execution

 Compute Capability 1.1+
 Asynchronous copy engine (single engine). Property

asyncEngineCount
 Atomic operation

 Compute Capability 1.3+ (e.g. C1060)
 Double precision arithmetic

 Compute Capability 2.0+ (e.g. C2050)
 Parallel kernel execution on GPU (property concurrentKernels)
 Two asynchronous copy engines (property asyncEngineCount)

 Compute Capability 3.0+ (e.g. K10)
 Warp shuffle functions

 Compute Capability 3.5+ (e.g. K20)
 Funnel shift
 Dynamic parallelism

Compute capatibility

http://en.wikipedia.org/wiki/CUDA

Tesla C1060

1 TFlops

Tesla S1070

4 TFlops

Fermi

 Announced in Sept., 2009

 May 2010 – start of selling
new videocard GT300
series

 Codename - Fermi

 3 billion transistors, 40-nm
 512 CUDA cores, support IEEE 754-2008, 16 SM
 Clock rate is about 1,5 GHz
 128 texture blocks
 384-bit memory controler GDDR5 (6x64 bit)
 Memory bandwidth is about 192 Gbit/s
 1,5 TFlopsSP, 750 GFlops DP
 Interface - PCI Express x16 2.0
 C++, in addition to C, Fortran, Java, Python, OpenCL,

DirectCompute.
 ECC

Fermi. Features

 NVIDIA GigaThread™ Engine с поддержкой
параллельного исполнения ядер

Fermi. Features

 NVIDIA Parallel
DataCache™ - the first
hierachical cache on
GPU

Fermi. Features

Tech. Specification Tesla
M2090

K10 K20 K20x K40

Performance DP 0.6 TFlops 0.19 TFlops 1.17 Tflops 1.31 Tflops 1.43 Tflops

Performance SP 1.3 TFlops 4.58 TFlops 3.52 Tflops 3.95 Tflops 4.29 Tflops

Number of GPUs Fermi 2x GK104s GK110 GK110 GK110B

Memory (GDDR5) 5GB 2x 4GB 5GB 6GB 12GB

Number of CUDA
cores

512 2x 1536 2496 2688 2880

Bandwidth (ECC off) 177 GB/s 320 GB/s 208 GB/s 250 GB/s 288 GB/s

Architecture
features

SMX SMX, Dynamic Parallelism, Hyper-Q

GPU specification

GTC 2014

 Titan Z
 2x GK110

 5760 CUDA cores

 8 TFlops (SP)

 12GB

 Pascal architecture
 Start selling 2016

 3D memory

 Bandwidth 5-12x vs. PCIe 3.0

 NVLink

GTC 2014 announcements

GPU GK107 (Kepler) GM107 (Maxwell)

CUDA Cores 384 640

Base Clock 1058 MHz 1020 MHz

GPU Boost Clock N/A 1085 MHz

GFLOP/s 812.5 1305.6

Compute Capability 3.0 5.0

Shared Memory / SM 16KB / 48 KB 64 KB

Register File Size / SM 256 KB 256 KB

Active Blocks / SM 16 32

Memory Clock 5000 MHz 5400 MHz

Memory Bandwidth 80 GB/s 86.4 GB/s

L2 Cache Size 256 KB 2048 KB

Maxwell

Approaches to GPU programming

Application

Optimized
libraries

Compiler
directives

Programming languages
(С/С++/FORTRAN)

Speed-up up to several dozen times Max performance

CUDA - Compute Unified Device
Architecture

CPU

GPU

CUDA Library

CUDA Runtime

CUDA Driver

Application

Definitions

 Thread — execution unit of instruction flow

 Thread block — logical set of threads.

 Warp— group of threads inside thread block which
are physically executed concurrently (32 threads)

 Grid — set of thread blocks

Programming model

 GPU has its own memory

 Program is split into threads and executed on SP

 SP has an access to the shared memory inside SM and
global memory of GPU

 Thread synchronization allowed only inside SM (thread
block)

 Execution is organized as a GRID of thread blocks

 Program on GPU is called «kernel»

Kernel execution
Host

Kernel

Device

Grid1 Block
(0,0)

Block
(M,0)

Block
(0,N)

Block
(M,N)

Grid2 Block
(0,0)

Block
(T,0)

Block
(0,P)

Block
(T,P)

Kernel
Thread

(0,0)

Thread
(1,0)

Thread
(h,0)

Thread
(0,w)

Thread
(1,w)

Thread
(h,w)

Thread block

Grid of
thread blocks

Thread block

 Each thread has its own ID— threadIdx

 Threads can be mapped to 1D, 2D, or 3D grid. threadIdx
variable is a structure with 3 fields (x,y,z)

 Thread block size is configured beforee the launch.

 Threads in thread block ≤ 512 or 1024 (depends on
GPU)

Grid of thread blocks

 Each thread block has its own ID— blockIdx

 Thread blocks can be mapped to 1D or 2D grid.
blockIdx variable is a structure with 3 fields (x,y,z)

 Size and structure of the Grid is configured before the
kernel launch

Example

 Let’s 2D grid is configured (HxW thread blocks). Each
thread block is 2D grid also (MxK threads)

 Thus, whole computational area covered with

 H*M threads vertically

 W*K threads horizontally

 The coordinate of the thread is
(blockID.x*M + threadID.x, blockID.y*K + threadID.y)

Technical specifications Compute capability (version)

1.x 2.x 3.x 5.x

Maximum dimensionality of grid of thread
blocks

2 3

Maximum x-, y-, or z-dimension of a grid of
thread blocks

65535 231-1

Maximum dimensionality of thread block
Maximum x- or y-dimension of a block

512

1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Size of Grid and Thread block

Execution model

 Thread block is executed on Stream Multiprocessor
 One thread block can use only one SM
 Schedule of thread block execution is not defined

 Number of thread blocks processed by SM defines by
number of registers and shared memory available

 Active thread block is a block currently executed
 Each active thread block is split into SIMD groups —

warps. Each warp contains equal number of threads
 Scheduler pass the control from one warp to another one

periodically
 Distribution of threads over warps is not depends on the

launch

 Good candidates

 Task which is well-suited to SIMD parallelization

 Data-parallel computations

 Bad candidates

 Task which is not well-suited to SIMD parallelization

 Task-parallel computations

 Task which is naturally sequential

Candidates for GPU
parallelization

Questions

